Skip to the content.

Making it rain

Cloud-based molecular simulations for everyone

Hello there!

Welcome to Making it rain page, here you can find a Jupyter notebook scripts for running Molecular Dynamics (MD) simulations using OpenMM engine and AMBER and CHARMM force fields files on Google Colab. This site is a supplementary material of the paper “Making it rain: Cloud-based molecular simulations for everyone” and we encourage you to read it before using this pipeline.

alt text

The main goal of this work is to demonstrate how to harness the power of cloud-computing to run microsecond-long MD simulations in a cheap and yet feasible fashion.

Important: We’ve updated the notebooks to CondaColab. Now, all the dependencies will be installed faster than before (less than half of the previous time). You will see a CondaColab cell, just run and wait a few seconds, the session will restart and this is normal and expected. After that, you can continue running the cells like normal. Do not use the Run all option. Run the condacolab cell individually and wait for the kernel to restart. Only then, you can run all cells if you want. Thank you for your support.

  1. AMBER Open In Colab - Using AMBER to generate topology and to build the simulation box
  2. CHARMM Open In Colab - Using inputs from CHARMM-GUI solution builder
  3. AlphaFold2+MD Open In Colab - Using AlphaFold2_mmseqs2 to generate protein model + MD simulation using AMBER to generate topology and to build simulation box

UPDATE (October 2021)

  1. Protein-Ligand simulations Open In Colab - Using AMBER to generate topology and to build the simulation box and for the ligand using GAFF2 force field
  2. Using AMBER Inputs Open In Colab - Using inputs from AMBER suite of biomolecular simulation program
  3. Using GROMACS Inputs Open In Colab - Using inputs from GROMACS biomolecular simulation package (AMBER, CHARMM and OPLS force fields are compatible)

UPDATE (March 2022)

  1. RESP Partial Charges Open In Colab - Using a SMILES as input and outputs a mol2 file with RESP derived partial charges. Options for setting method (HF, B3LYP, ...), basis set (3-21G, 6-31G*) and singlepoint or geometry optimization are available
  2. Small Molecules MD Open In Colab - Using a SMILES as a input, geometry optimization with TorchANI and topology with AMBER (GAFF2 force field)
  3. GLYCAM Open In Colab - Using inputs from GLYCAM server

UPDATE (August 2022)

  1. DRUDE Open In Colab - Using inputs from CHARMM-GUI Drude Prepper

UPDATE (March 2024)

  1. Protein-Membrane simulations Open In Colab - Using OpenFF to generate the topology and build the simulation box for protein-membrane systems with AMBER force fields.
  2. Martini+cg2all Open In Colab - Utilizing Vermouth, the Python library that powers Martinize2, to generate the topology and build the simulation box for protein systems using Martini force fields. Additionally, employing cg2at to predict all-atom trajectories from coarse-grained (CG) representations.
  3. AMBER Mutations Open In Colab - Performing mutations on protein/nucleic acid systems and utilizing AMBER to generate the topology and build the simulation box.

Tired to “just” run molecular simulations and want to try something new? Gabriel Monteiro da Silva (@GMondaSilva) and I are thrilled to share a colab notebook for running the subsampled AlphaFold2 approach for predicting protein conformational ensembles. Check it out: Open In Colab

Bugs

Acknowledgments

Do you want to cite this work?

Arantes P.R., Depólo Polêto M., Pedebos C., Ligabue-Braun R. Making it rain: cloud-based molecular simulations for everyone. Journal of Chemical Information and Modeling 2021. DOI: 10.1021/acs.jcim.1c00998.

DOI